Normal/Gaussian distribution

Univariate Gaussian distribution:

univGaussian.png

Multivariate (D-dimensional vector x) have:

multivGaussian.png

Some more properties/observation of Gaussian:

Marginal and conditional distributions of a partitioned Gaussian

taken from Bishop, eq 2.94 to 2.98
partitionedGaussian.png

Marginal and conditional Gaussian

taken from Bishop, eq 2.113 to 2.117
MaCGaussian.png

MLE for multivariate Gaussian

Given data point x$_1$ to x$_n$, we can get:
$\mu_{ML}$ = $\frac{1}{N}\Sigma_{n=1}^N$ x$_n$

$\Sigma_{ML}$ = $\frac{1}{N}\Sigma_{n=1}^N$ (x$_n$ - $\mu_{ML}$)(x$_n$ - $\mu_{ML}$)$^T$

For variance result, instead of averaging over N we can avergae over N-1 to get an unbiased variance estimator.